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Summation and Outlook 
Irradiation of NzFdNFz) provides a convenient 

source of atomic fluorine which can be used to intro- 
duce F into substrates and for to form radicals which 
readily yield products containing the NF2 moiety. 
Vibrationally excited intermediates may be generat- 
ed by this procedure a t  low pressures and a number 
of interesting unimolecular decomposition pathways 
studied. Fluoronitrene, NF, the fragment formed 
concomitantly with F in the photolysis of NF2, is 
isoelectronic with 0 2 .  How closely the chemistry of 
NF parallels that of 0 2  remains an intriguing chal- 

lenge.33 The photochemistry of N-fluorimines, ana- 
logs of ketones, promises to be a fruitful area of 
study. Uncovering evidence for alkylfluorodiazenes, 
RNzF, suggests that  other routes to these species 
should be sought, for they may well play a key role 
in the development of new fluorination methods. 

We are grateful to the National Science Foundation and the 
North Carolina State University Engineering Foundation for gen- 
erous financial support. 
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The notion of a potential function for the motion 
of the nuclei in a molecular system takes different 
forms from different points of view. 

For the classical idealist, the potential function is 
simply the work which must be done to bring the 
constituent atoms from infinite separation to some 
specified conformation. This definition gives no as- 
surance that a potential function exists, or is unique, 
and it is sadly lacking in operational significance. 

For the experimentalist, a potential function is 
that function which, when inserted into the appro- 
priate quantum mechanical description of the nucle- 
ar motion, reproduces his data within their scatter. 
It is to be hoped that  the same function is consistent 
with the results of more than one kind of experi- 
ment. 

For the theoretician, a molecular potential func- 
tion is a creature of the Born-Oppenheimer separa- 
tion, and attention tends to focus on the limitations 
of this remarkably useful approximation. 

A potential energy function is the basic premise, or 
the object of the game, in many different endeavors 
with small molecules. Many phenomena are thought 
of as being controlled by a single potential function 
and provide data for determining that function. Ex- 
amples are vibrational energy levels of diatomic1,2 
and polyatomic3 molecules, e!astic scattering of 
atoms,4 transport phenomena and gas imperfec- 
tions,5.6 and product energy distributions in atom- 
transfer reactions.7-9 There are, however, other pro- 
cesses of a fundamentally different sort, which can- 
not be explained in terms of a single potential func- 
tion. Examples are perturbations in bound 
states,lO,ll predissociation in small molecules,~2~13 
collisional transfer of electronic energy,14,15 and 
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electronic chemiluminescence.8316 These phenomena 
must be described in terms of the interaction of two 
(or more) electronic states or potential functions. 

Comparing problems tractable in terms of a single 
electronic state with those which must involve two 
states is, quite literally, like comparing a line to a 
plane. In view of this great increase in complexity, I 
have chosen to isolate a small, but well-defined and 
fundamental, part of the problem. This Account is 
devoted to a discussion of the geometrical propertries 
of triatomic potential functions in the neighborhood 
of an intersection. The intersection of electronic 
states raises fundamental questions about the precise 
definition of potential functions, their validity, and 
above all their usefulness. 

Definitions of Potential Functions 
To begin with, there are the coordinates of the 

electrons, lumped together in the set q. The coordi- 
nates specifying the shape of the system or confor- 
mation17 of the nuclei are (Q1, Q2, Q3) Q. They 
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will often be normal mode displacements from some 
reference conformation, but there are other useful 
ways to choose them. We use only these molecule- 
fixed coordinates, omitting angular momentum ef- 
fects. Since spin-orbit interaction is neglected, the 
electronic Hamiltonian operator A(q, Q )  may be 
taken as real. It operates on the electronic coordi- 
nates only; the Q’s are merely parameters. 

This operator is tractable only when it is repre- 
sented as a matrix in terms of a complete orthonor- 
mal set of electronic wave functions, d,(q,Q), which 
may depend parametrically on the set of nuclear dis- 
placements Q. The matrix elements are 

Hi,(Q) = Jd,,*fid,jdq (1) 
The diagonal element Hii( Q )  is the expectation value 
of the energy of a system represented by the wave 
function d,i. This function, Hii (Q)  = E L ( & ) ,  is by 
definition the potential energy function for the ith 
electronic state. This magnificently general but 
somewhat formal definition produces a pair of poten- 
tial functions corresponding to any chosen pair of 
electronic states, the basis states under consider- 
ation. There are several physically meaningful ways 
to choose these pairs of basis states. The adiabatic 
states $1, $2, which diagonalize H, are a possible 
choice. The resulting adiabatic potential functions 
are often considered to be the  potential functions of 
the molecule. In many cases, however, these adiabat- 
ic states are not the most useful or natural,18-22 since 
they sometimes undergo an abrupt change of charac- 
ter in the neighborhood of an intersection, as we 
shall see. In such a case, it is much more natural to 
work with states having a definite electronic configu- 
ration or orbital occupancy, which does not change 
as the molecule is distorted in the neighborhood of 
some conformation of interest. Anticipating a bit, we 
refer to these as crossing states, &, $2. 

It is important to establish the relationship be- 
tween these crossing states and the adiabatic states, 
and between the corresponding potential functions. 
These pairs of states must be related by a transfor- 
mation which takes one complete orthonormal set 
into another (eq 2). Here the transformation matrix 

$, = (cos 6)d,l - (sin e)$, ’ 

(2) h = (sin 614, +(cos e)+? 
which mixes the states d, has geometric significance 
as a rotation through the angle 6 of an arbitrary 
point in plane polar coordinates. The mixing is com- 
pletely determined by the single parameter 6, the 
mixing angle. In order to relate the potential surfaces 
for the states d, to those for the adiabatic states +, 
we need the relationship between the Hamiltonian 
matrix in the d, basis, Ho, and the corresponding 
matrix H+ in the $ basis 

where U is the transpose of the matrix which trans- 
forms d, - $ in eq 2. Starting with the d, states and 

HG = U+H& (3) 

(17) The term conformation is used in order to reserve the term configu- 
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Figure 1. Two adiabatic potential curves with an avoided inter- 
section. The adiabatic states are the indicated linear combina- 
tions of the crossing states 41, $JZ each of which has a definite or- 
bital occupancy. The dotted line represents the mixing angle, eq 2 
and 4. 

using the fact that  H+ is diagonal, the mixing angle 6 
is determined by 

(4) 

and separation of the adiabatic energies is 

( 5 )  
These equations involve matrix elements in the $I 
basis, as defined in eq 1. Consider for a minute the 
application of these equations to the crossing of dia- 
tomic potential curves. Suppose we have, a t  some 
particular internuclear separation Qo, 0 < H I 2  << 
H11 = H22, and H I Z  is a slowly varying function of 
Q. Then as Q passes through the value Qo, the de- 
nominator in (4) goes through zero and of course 
changes sign. The mixing angle 6 switches from near- 
ly 0 to nearly x / 2 ,  with 6 = i ~ / 4  a t  QO (see Figure 1). 

Intersections of Potential Energy Hypersurfaces 
In the previous section we have talked about po- 

tential energy functions,  avoiding geometrical lan- 
guage. Geometry needs a space, and several spaces 
are useful. There is the four-space E3Q in which the 
coordinates are potential energy and the three Q’s. 
Then there is the three-dimensional conformation 
space 3Q. In addition there are three spaces EQiQj 
which appear as sections of the E3Q space with Qk 
held constant. 

It is often most convenient to define curves and 
surfaces parametrically. With this in mind, define a 
curve as a one-parameter locus, i.e., a correspon- 
dence between values of a single parameter and 
points in a space. A surface is a two-parameter locus 
or a family of curves. A hypersurface is a three-pa- 
rameter locus or a family of surfaces. In E3Q, one 
relation among the four variables determines a hy- 
persurface, two independent constraints determine a 
surface, and three determine a curve. 

The word intersection will be used: for the pres- 
ent,23 to refer to the situation in which two adiabatic 
potential hypersurfaces in E3Q have one or more 
points in common, and we consider properties of the 
two surfaces a t  and near these points. By intersec- 
t ion locus is meant the set of all points in 3Q for 
which the two potential functions have the same 

E, - E ,  = [(H,, - HI$ + 4/H,z12]”2 

(23) The distinction between intersections and contact will be intro- 
duced later. 
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energy. The intersection locus is simply the projec- 
tion onto 3Q of the intersection in E3Q. 

The intersection of the adiabatic states is defined 
by E2 - El = 0 in eq 5 .  This is equivalent to  two 
conditions (eq 6 and 7).  We will make the traditional 

(6) 

HidQ) = 0 ( 7 )  
assumption24 that conditions 6 and 7 are indepen- 
dent and sufficient, although it has been suggested 
that further conditions distinguishing contact from 
intersection should be imposed.25 Each condition de- 
fines a surface in 3Q space, and their common points 
define the intersection locus. Since it is intersections 
we want, we ignore cases in which no intersection oc- 
curs, and assume that  we are dealing with states @ 
for which condition 6 is satisfied on some set of 
points in 3Q. There will be an intersection if condi- 
t'ion 7 is also satisfied a t  some of these points. 

The Role of Symmetry 
According to eq 1, condition 7 is simply an integral 

which must be zero. Considerations of symmetry 
provide a powerful tool for deciding whether or not 
an integral is zero, and we assume that  H12 will not 
be zero unless this is required by symmetry. We can 
make the maximum use of symmetry by choosing 
the coordinates Q1, Q2, Q3 to be normal mode dis- 
placements from some reference conformation Qo on 
an intersection locus. These displacements will 
belong to one or another of the symmetry types (irre- 
ducible representations) of the point group corre- 
sponding to the Qo conformation. For a triatomic 
molecule, the possible point groups are D a h  (linear 
with a center of symmetry), C m U  (linear), D3h (equi- 
lateral), C2,, (isosceles), and C, (planar, i.e., no sym- 
metry element but the plane of the molecule). Only 
the first three of these point groups can have degen- 
erate electronic (or vibrational) states with orbital 
(or vibrational) angular momentum. 

Since we are primarily interested in the immediate 
neighborhood of an intersection, i,t is natural to ex- 
pand the Hamiltonian operator H ( q , Q )  in a power 
series10326327 in the Q's ,  centered on Qo 

f i (q ,Q)  = s(q, Q J  + cE,(q. QdQj -t 

HZ&Q) - Hii(Q) = 0 

where, for example 

(9) 

Derived from this expansion of the operator, there 
will be corresponding expansions of its matrix ele- 
ments using an appropriate pair of electronic basis 
states. Here, and in the rest of the article, it is most 
convenient to use basis states which diagonalize the 
Hamiltonian at  Qo, but which are independent of 
displacements Q from that point.28 Therefore they 

(24) G. Herzberg and H. C. Longuet-Higgins, Discuss. Faraday Soc., 35, 

(25) K. R. Kaqvi, Chem. Phys. Lett . ,  15,634 (1972). 
(26) C. J. Ballhausen and A. E. Hansen, Amer. Reu. Phys. Chem., 23, 15 

(27) R. N. Porter, R. M. Stevens, and M .  Karplus, J. Chem. Phys., 49, 

77 (1963). 

(1972). 

5163 (1968). 

will not in general diagonalize H at  arbitrary confor- 
mations in the neighborhood of Qo. They will belong 
to one or another of the symmetry types of the point 
group of Qo. With basis states of this type, the linear 
terms in eq 1 have the form 

HdQ) = cQj S~l*(q,QO)si(q,QO)ILL(q,QO)dq (10) 
in which the integral itself is independeFt of Q. The 
symmetry properties of the derivatives M, can be de- 
duced from the symmetry of the corresponding Q1.27 
The symmetry properties of the H I ,  along with those 
of'&l(q, Q o )  and &2(q ,  Q o ) ,  allow one to identify those 
integrals of form 10 which must be zero, i.e., for 
which the integrand is not totally symmetric. In this 
way we identify the first terms in the expansion of 
the Hamiltonian matrix. 

Types of Intersections 
The various types of intersections which can arise 

are most conveniently cataloged according to the 
symmetry or point group of the molecule a t  the in- 
tersection p0int.~9 

(A) In the isosceles ( C z U )  point group we take for 
example electronic basis states belonging to the rep- 
resentations AI and B2 (Herzberg'slo notation), both 
of which are symmetric with respect to the plane of 
the molecule, but which have different symmetry 
with respect to the other operations of the group. 
The symmetric stretch, Q1, and bending, Q2, belong 
to  the A1 representation and do not distort the isos- 
celes symmetry. The antisymmetric stretch Q3 re- 
duces the symmetry to C,. It is Q3 which breaks the 
symmetry and mixes A1 and B2. The intersection is 
allowed only when Q3 = 0. The Hamiltonian matrix 
for electronic states of A1 and B2 symmetry therefore 
has the form,30 to first order in Q1 

This matrix determines, by means of eq 4 and 5 ,  the 
mixing of the basis states and the splitting of the two 
adiabatic hypersurfaces in the neighborhood of an 
intersection locus in the full EQ1Q2Q3 space. In the 
Q3 = 0 section, there is no mixing and we see the in- 
tersection of two planes, each associated uniquely 
with one of the basis states. In a section in which Q1 

is zero, the surfaces form a double cone, and the 
mixing varies smoothly with Q2 and Q3 as indicated 
in Figure 2. Because of its appearance in this section, 
this intersection of AI and Bz (or A2 and B1) states 
allowed in CaC is commonly called a conical intersec- 
tion.24,29 

A conical intersection also occurs in Dsh (equilat- 
eral), involving the components of a degenerate E' 
state,27 which splits into A1 and B2 states when the 
system is distorted into CzU (isosceles). In terms of 
the normal mode displacements, the matrix has the 
form of (11) with a = c = d = 1 and b = -1. The 
normal modes Q2 and Q3 are degenerate in this case. 

A conical intersection is of interest in connection 
with the electron jump reaction (eq 12). This in- 
volves a change in electronic configuration from K + 

(28) H. C. Longuet-Higgins, Aduan. Spectrosc., 2,429 (1961). 
(29) T. Carrington, Faraday Discuss. Chern. Soc., 53, 27 (1972). 
(30) All these coordinates Q, are understood to be multiplied by a con- 

stant scale factor with dimensions ofenergy. 
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Figure 2. A conical intersection of A1 and Bz states in C2”. The 
mixing of the basis states on the two sheets of the cone is indicat- 
ed by the mixing angle 8. The Hamiltonian matrix is indicated 
schematically, showing only the first-order dependence on normal 
mode displacements. The cone is not in general circular. See eq 
11. 

K + Br, -+ KBr + Br (12) 

Br2 to K+  + Br2- as the reactants approach.31 In 
C2u, the 2A1 surface correlating with neutral reac- 
tants crosses the strongly attractive 2B2 surface cor- 
relating with K+ + Br2-. In the unlikely event that  
K approaches Br2 along the perpendicular bisector, 
there can be no electron jump, since there is no in- 
teraction of the two surfaces in 62” .  However, in 6, 
conformations in the neighborhood of the intersec- 
tion, the interaction will be strong, and there will be 
an abrupt change in character of the adiabatic sur- 
face, covalent to ionic, as the reactants approach. 
This electron jump will be less sudden for trajec- 
tories which do not come so close to the intersection, 
and the attraction between the reactants caused by 
mixing in of ionic character will extend to longer 
range. 

The discussion just given, based on state correla- 
tions, has a more primitive but qualitatively similar 
version based on orbital correlations. The electron 
jumps from a ug orbital on K to  a uU orbital on Bra, 
forbidden in the broadside approach.32 Arguments 
based on orbital correlations are much used, and, it 
must be observed, 

(B) Another common type of intersection involves 
the components of a 11 state of a linear ( C m u )  mole- 
cule. When the molecule is bent, the degenerate I1 
state splits into two states, A’ and A”, symmetric 
and antisymmetric with respect to the plane of the 
molecule, as indicated in Figure 3. The splitting is 
proportional to the square of the bending coordinate, 
but there is no mixing of the states due to  a static 
displacement, since they are always of different sym- 
metry. The ground state of NO2, 2A1, and the first 
excited state, 2Bl, are components of the 2rIu ,  state 
which correlates with ground states of 0 + NO.35 
Although A1 and B1 are not mixed by simply bend- 
ing the molecule, they can be mixed by rotation or 

much of the time.34 

(31) J. L. Kinsey, MTP (Med. Tech Publ Co.) Int. Rev. Sei., Phys. 

(32) G. M. Kendall and R. Grice, Mol. Phys., 24,1373 (1972). 
(33) B. H. Mahan and J. S. Winn, J. Chem. Phys., 57,4321 (1972). 
(34) Not always useful however. For H2, the state l u g l u u l Z u +  has a dis- 

sociation energy of 80 kcal/mol, greater than that of H ~ T ,  and dissociates 
adiabatically to H(12S) + H(2*P). 

Chern , Ser. One, 173 (1972). 

(35) R. A. Gangi and L. Burnelle,J. Chern. Phys., 55,851 (1971). 

Figure 3. A glancing intersection of the components of a I1 state. 
There is no mixing of the basis states. Q dependence of the Ham- 
iltonian matrix is indicated. 

spin-orbit coupling. This may occur in the radiative 
r e c ~ m b i n a t i o n , ~ ~  0 + NO - NOz*. 

(C) For a linear molecule with a center of symme- 
try ( D d ,  a quite different type of intersection can 
occur, between a Zg+ and a L+ state. Though this 
intersection is not very common, it provides a partic- 
ularly striking illustration of the fact that  an inter- 
section may have three very different forms in its 
three different sections. The Hamiltonian matrix 
takes the form 

Here for simplicity we have omitted the coefficients 
of the Q’s, retaining only the qualitative features of 
the lowest order Q dependence. In the Q2 = 0 section 

space) we have a double cone with variable 
mixing, as in Figure 2. In the Q3 = 0 section (EQ1Q2 
space) there is no mixing, and the surfaces are inter- 
secting parabolic cylinders. In the Q1 = 0 section, 
the surfaces meet a t  a point. They separate linearly 
in the Q3 direction with mixing, but quadraticall.. in 
the Q2 direction without mixing, as indicated sche- 
matically in Figure 4.  

(D) Even in C, conformations, intersections and 
near-intersections are of interest. If the two states 
have different symmetry with respect to the plane 
(A’ and A” states), they will not interact as a result 
of p y  static deformation, since Hi2 will be zero ev- 
erywhere. Any section of the intersection wili be, to  
first order in the displacements, two intersecting 
planes, with no mixing. The states may be mixed by 
spin-orbit coupling or rotation, however, and this 
mixing will be significant only in the neighborhood 
of the intersection. Thus the intersection of A’ and 
A” states in C,, while uninteresting from the point 
of view of static displacements, can be quite impor- 
tant  in real collisions. 

If the two states have the same symmetry with re- 
spect to the plane, H 1 2  will not be zero in any finite 
bent conformation. The two hypersurfaces may ap- 
proach more or less closely, but will not actually in- 

(36) F. Kaufman, in “Chemiluminescence and Bioluminescence.” J. Lee, 
D. M. Hercules, and M. Cormier, Pleiium Press, Kew York, S.  Y., 1973, p 
83. 
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Figure 4. Intersection and mixing of Zg+ and Xu+ states, $1 and 
$2. 

tersect. This type of avoided intersection is responsi- 
ble for many electron jump reactions, including some 
of the alkali-halogen systems3’ and, for example, 38 
M + Liz 4 HLi -t- Li. 

A special type of avoided intersection in C ,  is an 
asymptotic intersection, in which the two surfaces 
coalesce as one atom is removed to infinity, leaving 
the other two as a diatomic molecule. The splitting 
and mixing are similar to that shown in Figure 1, 
with the separation between the two curves decreas- 
ing as the third atom is pulled a ~ a y . ~ 9  Intersections 
of this type occur for H3f 39 and H3.40 

Properties of the Intersection Locus 
The intersection locus is the set of all points in the 

3Q space (or any conformation space) for which the 
two adiabatic potential functions are equal. More 
formally, it is the projection onto the 3Q space of the 
intersection in the E3Q space. 

The intersection locus in the 3 4  space is deter- 
mined by two conditions, (6) and (7). In general, 
each of these conditions defines a surface in 3Q, and 
their intersection defines the intersection locus, a 
curve in 3 4 .  It may happen, however, that condition 
7 is satisfied everywhere in 3Q, i .e . ,  when the basis 
states have different symmetry with respect to the 
plane of the three-atom system. The intersection 
locus is then a surface in 3Q rather than a curve. 

The locus may or may not extend to infinity. If it 
is possible to pull one atom completely away from 
the other two without leaving the intersection, the 
locus will be called infinite in extent; otherwise it is 
finite. The simplest example of a locus which is an 
infinite surface is the intersection of the A’ and A” 
components of a I1 state. On the locus linear dis- 
placements Q1 and Q3 can take any values, defining 
an infinite surface in the 3Q space. On the other 
hand, in the intersection of A’ and A” states in Cs, 
the locus may be a finite surface. As an e ~ a m p l e , ~ , ~ ~  
consider the first two excited states of NOS. When N 
is removed from 0 2  starting at  the equilibrium con- 
formation of ground state NOz, the lower state, 

(37) D. R. Herschbach in ref 36, p 29. 
(38) Y .  T. Lee, R. J. Gordon. and D. R. Herschbach, J.  Chem. Phys., 54, 

(39) R. K. Preston and J. C. Tully,J.  Chem. Phys., 54, 4297 (1971). 
(40) K.  W. Chow and A .  L. Smith, Chem. Phys. Lett., 7, 127 (1970). 

2410 (1971). 

2B1(A”), correlates with excited N(2D) and ground- 
state 0 2 .  The higher excited state, ZBz(A’), corre- 
lates with ground-state products. Therefore the hy- 
persurfaces must cross as the N atom is removed, 
and this will be true in C,  as well as CZ“, since the 
states have different symmetry with respect to the 
plane of the molecule. It is clear, however, that the 
hypersurfaces must separate eventually when the N 
is withdrawn, since in the limit they are separated 
by the excitation energy of the N atom. 

When the intersection locus is a curve, there are 
again the two possibilities, infinite or finite extent. 
An example of a locus curve of finite extent is also 
provided by NOz, this time the ground-state 2Ai(A’) 
and the 2Bz(A’) state mentioned aboveeZ9 I t  remains 
to discuss a locus which is an infinite curve. In the 
simplest example of this, we have a diatomic mole- 
cule Xz with two states of different symmetry, for 
example, Zg+ and Zu-,  with potential curves which 
cross. As the third atom, with S,  symmetry, for ex- 
ample, approaches X2 in C m ,  we have electronic 
states A1 and Bz for the three-atom system. These 
states do not interact in C m ,  so the approach of the 
third atom does not split the intersection originally 
present in the diatomic curves. Conversely, as the 
third atom recedes to infinity in Cm,  the states do 
not separate and the intersection extends to  infinity. 
In C,, however, both A1 and B2 become A‘, and the 
locus is a curve rather than a surface. 

A locus curve (or surface) of finite extent may 
have an end point (or edge), or instead may be a 
closed loop (or closed surface). A simple continuity 
argument indicates that a finite locus must be 
closed, without end or edge. The electronic Wamilto- 
nian operator is a completely continuous function of 

, nuclear displacements, i .e. ,  all derivatives are con- 
tinuous for all Q. Its matrix elements, using elec- 
tronic basis states which are themselves completely 
continuous functions of the nuclear displacements, 
and its eigenvalues will also be completely continu- 
ous. Thus the potential energy functions are com- 
pletely continuous and so are the surfaces, eq 6 and 
7, which define the locus curve in 3Q, which must 
also be completely continuous. To see that this curve 
must be closed, consider the following counter-exam- 
ple. Suppose that the two surfaces (6) and (7) inter- 
sect along a curve of finite length. A section through 
this curve would have the form shown in Figure 5 .  
Since the curves C1 and CZ coincide over the range 
a-b, they cannot separate outside this range without 
having a discontinuity in a t  least one derivative. 
Since this violates the condition that the locus is 
completely continuous, we have the result that the 
finite locus curve cannot have an end point, and 
therefore must be a closed curve. When the intersec- 
tion locus is a finite surface, it must be a closed sur- 
face, as one can show by arguments like those just 
presented, applied to hypersurfaces in E34. 

The Classification of Intersections 
The various types of intersections can be classified 

according to the role of symmetry, the dimensional- 
ity of the locus, its extent, and the order of contact 
of the surfaces. 

As regards the role of symmetry, three cases arise. 
An enforced intersection involves the components of 
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a degenerate electronic state (two-dimensional repre- 
sentation) such as n(A’ + A”) in CmU or IIu(Al + BI) 
in Dmh for linear molecules and E’(A1 + B2) in D 3 h  
for equilateral. In these cases one knows a priori pre- 
cisely where the surfaces will intersect. The intersec- 
tion is enforced in all linear or equilateral conforma- 
tions. In the system ABA in bent conformations, 
symmetry plays a weaker role. Consider states of AI 
B2 symmetry in C2“ (isosceles), both A’ symmetry 
when distorted into Cs. Symmetry will allow an in- 
tersection only in Cpu conformations, but it does not 
enforce the existence of an intersection, nor can it 
tell us precisely where the locus will occur in the QI, 
Q2 plane. In the ABC system in bent conformations, 
symmetry plays no role. Two states, A’ and A” in 
Cs, can intersect anywhere, and symmetry provides 
no restrictions. An intersection is purely accidental. 

The most important properties of the locus in 3Q 
are its dimensionality (it can be a surface or a curve) 
and its extent  (finite or infinite). For an enforced in- 
tersection, the locus is infinite. In an allowed inter- 
section, the locus is a curve which may be finite or 
infinite in extent. In an accidental intersection, the 
locus will be a surface, which may or may not extend, 
to infinity. In addition to  these general properties, 
the behavior of the hypersurfaces in the neighbor- 
hood of the intersection is of interest. They may sep- 
arate linearly, quadratically, or even as  some higher 
power of normal mode displacement, so that the de- 
gree, or order of contact, becomes another descrip- 
tive property. 

In addition to these geometrical properties, the 
manner of mixing of the basis states in the neighbor- 
hood of an intersection is a characteristic property 
with a rich variety of expressions. 

Conclusion 
The classification of intersections of adiabatic po- 

tential hypersurfaces reveals several quite different 
types, and it is a pleasant endeavor to explore their 
geometrical properties and electronic character. It is 
tempting to regard a potential function as an end in 
itself, something to be produced and admired. I 
would not be the first to take that  view, but it would 

Figure 5. Two curves which coincide over a finite interval cannot 
separate outside this interval without a discontinuity in at least 
one derivative. 

be irresponsible to end this article without turning 
outward for a moment. 

Does i t  really matter, as far as observable quan- 
tities are concerned, what type of intersection we 
have? In view of the great success of classical trajec- 
tory calculations on a single potential s~ r face ,79~  it is 
natural to try to extend this approach to the case of 
intersecting surfaces, and an excellent beginning in 
this direction has been made.41-43 I t  is clear that  the 
dynamics of the nuclear moton near an intersection 
will play a crucial role,18-21 and the Landau-Zener 
model should be qualitatively usgful. Slow collisions 
wil1.tend to stay on a single adiabatic surface, if they 
do not pass too close to  an intersection. Fast collisions 
will tend to stay on one of the crossing surfaceg. Mo- 
tion perpendicular to the reaction coordinate will also 
be .44 Dynamical effects will tend to blur 
distinctions made on the basis of geometry alone. 
Nevertheless, the geometrical properties of an inter- 
section provide the logical starting point for a discus- 
sion of dynamics. 
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